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Abstract

This paper proposes a weakly supervised instance segmenta-
tion method that only requires image-level labels for train-
ing. The proposed architecture consists of three branches,
the multiple instance learning branch, the semantic segmen-
tation branch, and the instance segmentation branch. The
multiple instance learning branch selects bounding boxes in-
dicating locations of instances. The semantic segmentation
branch produces semantic segmentation results of delineat-
ing shapes of instances. By combining the selected boxes and
the generated segmentation results, we produce pseudo in-
stance segmentation labels for training the instance segmen-
tation branch. For further improving the quality of the gen-
erated pseudo labels, we propose the center-context-gap re-
finement module and it significantly boosts the performance.
The experiments show that the proposed method achieves fa-
vorable performance against the state-of-the-art weakly su-
pervised methods.

Introduction
Instance segmentation (He et al. 2017; Novotny et al. 2018)
aims at jointly detecting and segmenting each individual in-
stance in an image. It has become a key component of scene
understanding because it provides detailed information for
scene analysis, such as object locations, object shapes, and
numbers of object instances. As such, instance segmentation
is valuable and beneficial to many high-level vision applica-
tions, e.g., autonomous driving (Zhang, Fidler, and Urtasun
2016), visual question answering (Gan et al. 2017) and im-
age and sentence matching (Huang, Wang, and Wang 2017).

Instance segmentation is a challenging task because both
correct detection and precise segmentation are required. Re-
cently, significant progress on instance segmentation (He et
al. 2017; Novotny et al. 2018) has been made with convolu-
tional neural networks (CNNs) (Krizhevsky, Sutskever, and
Hinton 2012) which enables joint visual features and nonlin-
ear classifier learning, but the sufficient instance-level pixel-
wise training annotations are required. It is expensive to col-
lect such data as typically these annotations are manually
drawn or delineated by tools with intensive user interaction.
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Figure 1: The effect of the proposed CCGR module. Each
row gives an example. Green and blue rectangles are re-
spectively the bounding boxes before and after refinement.
In (a) and (b), we show the input images and the predicted
segmentation score maps with the bounding boxes, respec-
tively. It is clear that the initial (green) boxes often focus on
the discriminating regions and cannot cover the whole ob-
jects. After refinement, the refined (blue) boxes better cover
the whole objects. In (c) and (d), dotted rectangles show
the enlarged boxes indicating the surrounding context of
the bounding boxes. In (c), both the unrefined boxes and
their context regions contain high scores in the segmenta-
tion maps. In (d), after refinement, the refined boxes contains
high scores while their context regions contain much lower
scores, meaning the boxes cover instances more tightly.

Therefore, the heavy annotation cost of collecting training
data becomes a barrier from its application in potential tasks.

To alleviate the heavy cost, this paper focuses on weakly
supervised instance segmentation with only image-level an-
notations provided. Image-level annotations can be collected
more easily, thus significantly reducing the annotation cost.
To achieve this goal, we proposes a CNN architecture con-
taining three branches: the multiple instance learning (MIL)
branch, the semantic segmentation (SS) branch, and the in-
stance segmentation (IS) branch shown in Figure 2. The
MIL branch selects the bounding boxes that best cover the
inferred object instances. The SS branch produces seman-
tic segmentation results. The selected boxes from the MIL
branch indicate the locations of instances while the seman-
tic segmentation results from the SS branch delineates the
shapes of instances. By combining them together, we can
generate pseudo instance segmentation labels for training
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Figure 2: Overview of the proposed network. We first extract the features of an input with the shared convolutional layers. Then,
these extracted features are fed into the multiple instance learning (MIL) branch and the semantic segmentation (SS) branch for
selecting the object proposals and generating the segmentation score maps respectively. Based on the selected proposals and
the score maps, center-context-gap refinement (CCGR) further refines the box proposal and generates the pseudo instance-level
labels for training the instance segmentation (IS) branch.

the IS branch. The optimization is iterative, and the results of
IS branch can be further fed to the MIL branch and segmen-
tation branch for generating pseudo ground truth with better
quality, consequently improving instance segmentation.

The quality of the pseudo ground truth is key to the perfor-
mance. Therefore, we propose a novel refinement scheme,
center-context-gap refinement (CCGR), to refine the bound-
ing boxes based on the segmentation results, and then gen-
erate better pseudo instance-level labels for training the IS
branch. In CCGR, we would maximize the segmentation
scores within the box to encourage it only contain the whole
instance. At the same time, we would minimize the segmen-
tation scores of the surrounding context of the box to urge
it cover less instance regions. By maximizing inside the box
and minimizing within its surrounding, the gap between the
center box and its context is enlarged. Thus, we call it as
the center-context-gap refinement. The proposed CCGR is
differentiable, and it can be integrated into our model and
optimized by simply using gradient descent. Figure 1 gives
examples motivating the use of the CCGR module.

This paper makes the following contributions. First, we
propose a CNN architecture to address weakly supervised
instance segmentation. The proposed method trains an in-
stance segmentation model with only the image-level su-
pervision. It is simple and flexible because the architecture
in each branch could be replaced with any method. Sec-
ond, an iterative optimization scheme is adopted to effi-
ciently optimize the proposed architecture, and a novel re-
finement scheme, center-context-gap refinement (CCGR), is
proposed to repair the poor bounding boxes. CCGR is differ-
entiable, and the gradient descent method can be employed
for searching the optimal bounding box. Finally, we compre-
hensively evaluate our method on two standard benchmarks

for instance segmentation, PASCAL VOC 2012 (Evering-
ham et al. 2010) and the newly collected COCO-VOC (Hsu,
Lin, and Chuang 2019). The results show that our method
can achieve better than the state-of-the-art weakly super-
vised instance segmentation methods.

Related Work
Weakly supervised semantic segmentation. State-of-the-
art semantic segmentation methods (Lin et al. 2019;
Zhang et al. 2018; Chen et al. 2018) are built upon
CNNs (Krizhevsky, Sutskever, and Hinton 2012). Despite
the effectiveness, training CNNs for semantic segmentation
requires a vast amount of manually-drawn pixel-wise ob-
ject annotations. To reduce the burden of pixel-wise anno-
tations, various types of coarse annotations are employed
as the supervision, such as bounding boxes (Khoreva et al.
2017), scribbles (Tang et al. 2018), points (Qian et al. 2019),
and image-level labels (Hou et al. 2018; Wei et al. 2018;
Ahn and Kwak 2018; Shen et al. 2018; Wang et al. 2018).
We focus on the image-level supervision whose annotation
cost is the least. However, different from these methods, the
paper works on instance segmentation which is a more chal-
lenging task than semantic segmentation.
Instance segmentation with pixel-wise annotations. Con-
ventional researches on instance segmentation can be di-
vided into two categories, namely the proposal-based meth-
ods (He et al. 2017; Novotny et al. 2018) and the proposal-
free methods (Liu et al. 2018). The former first detects
bounding boxes and then segments the instances within the
bounding boxes with region proposal network (RPN) (Ren
et al. 2015) while the latter directly segment each instance
without the detection results. Despite the effectiveness and
efficiency, these methods for instance segmentation rely on a



large number instance-aware pixel-wise annotations to learn
their models, but different from them, the proposed method
can be trained with only the image-level supervision.
Instance segmentation with low annotation cost. To re-
duce the annotation cost, few methods address instance seg-
mentation with the coarse supervision including bounding
boxes (Khoreva et al. 2017) and image-level labels (Zhou et
al. 2018; Zhu et al. 2019; Cholakkal et al. 2019). PRM (Zhou
et al. 2018) is the first deep method using the image-level
labels for instance segmentation. In PRM, the peak in the
classifier response map are regarded as the potential object
instance. Thus, the peak propagation is proposed to exploit
the peak cue, and then produce the instance-aware cue to
search the top-ranked proposal as final results during infer-
ence. Although PRM is effective, it has two issues: 1) It
only recognizes the discriminative object part resulting in
the higher classifier response. 2) The inference cost is high
because its inference involves back propagation, proposal
generation and proposal ranking. Recently, to address the
first limitation, IAM (Zhu et al. 2019) leverages incomplete
region responses from PRM and the corresponding matching
proposals to learn a CNN-based extent module. This module
can fill each pixel with the value from its neighbors to make
the object region more complete. However, the additional
parameters in this module should be learned. Our CCGR
is learning-free, so no additional parameters are included.
Cholakkal et al. (Cholakkal et al. 2019) integrate the addi-
tion density branch into the PRM framework with the addi-
tional object count information, and this branch can predict
the global object count and preserve the spatial distribution
of objects. However, they require additional information of
the object count, but our method doesn’t.

Proposed Method
In this section, we first give an overview of the proposed
method, and then describe the network architecture with
three branches: the multiple instance learning (MIL) branch,
semantic segmentation (SS) branch and instance segmenta-
tion (IS) branch in detail. Next, we explain the proposed
center-context-gap refinement. Finally, we describe the op-
timization strategy and provide implementation details.

Overview
In our weakly supervised setting, the training set D “

tIn,Lnu
N
n“1 contains a set of images In and their corre-

sponding labels Ln. The label Ln is a C-d vector indicating
which class the image In contains, where C is the number
of classes. Given the training set D, our goal for weakly-
supervised instance segmentation is to learn a model that
can jointly detect and segment each instance in an image.

Figure 2 depicts the proposed architecture consisting of
three branches, MIL, SS and IS, with the shared convolu-
tional layers, and an additional refinement module, CCGR.
Following (Zhou et al. 2018; Cholakkal et al. 2019; Zhu
et al. 2019), we use the multi-scale combinatorial grouping
(MCG) (Pont-Tuset et al. 2017) to extract proposals. For an
image In, we use Pn to denote its set of object proposals.
The MIL branch is designed to select box proposals that po-
tentially correspond to instances from Pn. The SS branch

is designed to generate segmentation score maps indicating
the likelihood that each pixel belongs to a specific class. By
combining a selected box and the score map, we can obtain
the pseudo instance segmentation label for an instance. With
the pseudo labels, the IS branch built on Mask R-CNN (He
et al. 2017) can be trained for instance segmentation. For im-
proving the quality of the pseudo labels, the CCGR module
is designed to refine a selected box proposal with the help of
the corresponding segmentation score map.

The network is trained by minimizing the following loss:

Lpwq “ LMILpwq ` LSSpwq ` LISpwq, (1)

where LMIL, LSS , LIS are respectively losses for the MIL,
SS and IS branches. However, direct optimization of Eq. (1)
is difficult due to the limited GPU memory. Instead, we
adopt the iterative optimization strategy and alternate opti-
mization among branches. Once the model is learned, given
a test image, the inference only needs to take a forward
pass through the IS branch to generate results. Neither other
branches nor additional proposals are required.

Proposed network architecture
This section describes the details of the three branches.
Multiple instance learning branch. Multiple instance
learning (MIL) is widely used in weakly supervised object
localization methods (Bilen and Vedaldi 2016; Wan et al.
2018). In these methods, an image is often regarded as a
bag, and the bounding boxes inside it are taken as instances.
For each image, only the box that most likely belongs to a
specific class is retained to train the classifier for this class.
Since there are often multiple instances in an image, for our
task, it is necessary to retain a box for an instance and mul-
tiple boxes in an image, instead of a box per image. For that
purpose, following the observation in (Zhou et al. 2018) that
an object instance often covers a peak in the classifier re-
sponse map, we take a peak as a bag and regard all MCG
box proposals containing only this peak as its correspond-
ing instances. Each bag is assigned the same class label as
the peak. With the bags and their associated labels, we em-
ploy the weakly supervised deep detection network (WS-
DDN) (Bilen and Vedaldi 2016) in our MIL branch for its
effectiveness. Note that any MIL method can be used as the
MIL branch as long as it is end-to-end trainable.

As shown in Figure 2, for each image In and its box
proposals Pn, the proposal features are first extracted with
ROIAlign (He et al. 2017) from the feature maps of the
shared convolutional layers. Then, givenR proposal features
inside the bag B and its associated bag label LB , we fed
them into two streams, classification and detection. The for-
mer maps the proposal features to a matrix xcls P RCˆR

by fully connected layers, where C is the number of im-
age classes. The latter maps the proposal features to xdet P

RCˆR. The two matrices are then passed through two in-
dividual softmax operators along with different dimensions,
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By softmax along columns (among classes), σcls can be
viewed as performing classification for each box as it finds
the most likely class for each box. Similarly, by softmax
along rows, σdet can be viewed as performing detection.

The proposal scores xB for the bag B can then be pro-
duced by the element-wise product xB “ σcls

`

xcls
˘

d

σdet
`

xdet
˘

. The class score φB of the bag B is then ob-
tained by summing over all proposals of B. With φB and
LB , the standard multi-class cross entropy loss can be used
to measure the loss for the bag B,

LpBq “ ´
C
ÿ

c“1

LBpcq log φBpcq ` p1́ LBpcqq logp1́ φBpcqq.

The sum of all bag losses serves as the loss LMIL for train-
ing the MIL branch.
Semantic segmentation branch. A fully convolutional net-
work (Long, Shelhamer, and Darrell 2015) is adopted for the
semantic segmentation branch with a pyramid pooling mod-
ule (Zhao et al. 2017) which extracts multiple-scale repre-
sentations among different sub-regions. This module fuses
features at different pyramid scales. At the coarsest level,
global pooling is performed to generate a single bin output.
At the following levels, the feature map is separated into sev-
eral sub-regions and forms pooled representations for differ-
ent locations. The formed feature maps at different scales
have different sizes. All features at different pyramid levels
are upsampled to the original size by the bilinear interpola-
tion, and then concatenated as the final pyramid pooling fea-
ture. The segmentation score map is generated by a 1 ˆ 1
convolution layer with the pyramid pooling feature. The
multi-class cross entropy loss between the score maps and
the pseudo semantic segmentation labels is adopted as LSS .
The pseudo labels are generated with a weakly-supervised
semantic segmentation method (Ahn and Kwak 2018) for
the first iteration and obtained from the outputs of the in-
stance segmentation branch for the succeeding iterations.
Instance segmentation branch. We adopt Mask R-
CNN (He et al. 2017), the state-of-the-art supervised in-
stance segmentation network, as the IS branch. Mask R-
CNN extends Faster R-CNN (Ren et al. 2015), which is
designed for object detection. The output of Mask R-CNN
contains the bounding box, the instance mask and the cor-
responding class label. We follow Mask R-CNN (He et
al. 2017) and define the instance segmentation loss as
LISpwq “ Lclspwq ` Lboxpwq ` Lmaskpwq in Eq. (1),
where Lclspwq assesses accuracy of the classification task;
Lboxpwq measures goodness of the box coordinate regres-
sion; and the last term Lmaskpwq evaluates the effective-
ness of the instance mask prediction. The ground truth used
in Lmaskpwq is generated by the proposed CCGR module.
Thus, no manually annotated mask is required for training.

Center-context-gap refinement
The quality of pseudo instance segmentation labels is cru-
cial to the performance. A pseudo instance label is generated
by fusing the segmentation score map and a bounding box,
where the former delineates the specific class regions and
the latter indicates the object location. The bounding box

is initially selected by the MIL branch. For improving the
quality of the bounding box and consequently enhancing the
generated pseudo labels, we propose the center-context-gap
refinement module (CCGR) for the box refinement.

An ideal bounding box for an instance would exactly
cover the whole instance, and it would have two properties.
First, the ratio of instance pixels in the box should be high.
Thus, one could maximize the average segmentation score
within the box, but doing this prefers small boxes containing
few pixels with the highest segmentation scores. To avoid
it, the second property encourages that the box surrounding
should contain as fewer instance pixels as possible. Thus,
minimizing the average segmentation score of the surround-
ing would hold this property. By combining the two prop-
erties together, we maximize the gap between the average
segmentation scores of the box (center) and its surrounding
(context). As shown in Figure 1, the bounding box selected
by the MIL branch usually contains only the discriminative
object region. By maximizing the center-context gap, the re-
fined box covers the whole instance much better.

The inputs to CCGR are the selected bounding box B and
the segmentation score map S. Assume that the upper-left
and lower-right coordinates of B are px1, y1q and px2, y2q
respectively. The surrounding box B̃ is the box having the
same center as B but a larger size with 1.5 times B’s width
and height. Let px̃1, ỹ1q and px̃2, ỹ2q denote the upper-left
and lower-right coordinates of B̃, as shown in Figure 3. We
define the context region C as the surrounding of B within
B̃, i.e., C “ B̃ ´ B. Assume that the areas of B and B̃ are
respectively AB and AB̃. The area of the context C is thus
AC “ AB̃ ´ AB. CCGR adjusts the selected bounding box
by maximizing the gap between the average segmentation
scores of B and C. Given S, the average segmentation score
ΦpBq of the box B is calculated as

ΦpBq “
şy2

y1

şx2

x1
Spx, yq dx dy
AB

. (2)

The average segmentation score of C can then be calculated
as ΦpCq “ ΦpB̃q´ΦpBq. The CCGR loss for a box is defined
as the gap between ΦpBq and ΦpCq, i.e.,

LCCGR “ ΦpCq ´ ΦpBq. (3)

When minimizing Eq. (3), high segmentation score in the
context region is penalized by the first term, and the high
segmentation score inside the bounding box is encouraged
by the second term. The CCGR loss in Eq. (3) is differen-
tiable, so the bounding box coordinates can be optimized
with gradient descent. After CCGR, we directly crop the
segmentation map with the refined boxes as the pseudo in-
stance labels for training the IS branch.

Figure 3 shows an example of box refinement. In the first
row, it is obvious that although the pixels inside the selected
bounding box have high segmentation scores, the context re-
gion also contain pixels with high scores. After refinement,
in the second row, almost all pixels in the context region
have low segmentation scores, and the refined box covers
the object more tightly.
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Figure 3: The example of CCGR visualization. The first row
shows the boxes before refinement. The solid rectangles rep-
resent the bounding boxes while the dotted ones represent
the context. The second row shows the boxes after refine-
ment. (a) segmentation score maps. (b) segmentation scores
inside the context region. (c) segmentation scores inside the
bounding box.

Iterative optimization and its initialization
Due to limited memory, it is infeasible to train the whole
network in Figure 2. Thus, we adopt an iterative strategy
for the optimization. In each iteration, the MIL, SS, and
IS branches are sequentially trained. More specifically, we
first train the MIL branch with the given bags. Next, the SS
branch is trained with the provided pseudo class-level seg-
mentation labels. With the boxes from the MIL branch and
the segmentation score maps generated by the SS branch,
CCGR refines all bounding boxes. With the refined boxes,
we crop the segmentation map using the boxes for generat-
ing pseudo instance-level labels that are fed to the IS branch
for training. After each iteration, the bags and the class-level
pseudo segmentation labels are updated according to the in-
stance segmentation results of Mask R-CNN. We found em-
pirically that 3 „ 5 iterations are sufficient for training.

The peak in the response maps of the classifiers (Zhou et
al. 2018) can indicate a potential object instance. Therefore,
for the MIL branch, a peak is regarded as a bag, and its class
label is assigned to the bag. Then, we generate the MCG box
proposals (Pont-Tuset et al. 2017), and collect the first 10
top-ranked proposals containing the peak. A box proposal B
is ranked by the following ranking function,

R pBq “ BS ´ 0.1ˆ
B ˚ p1´Oq

|B|
, (4)

where BS is B’s objectness score from (Pont-Tuset et al.
2017), O is the segmentation score map from (Ahn and
Kwak 2018), and ˚ is the Frobenius inner product between
two matrices. The first term encourages proposals with high
objectness scores while the second term penalizes the pro-
posals containing more background. For the later iterations,
the bounding boxes from the IS branch are used as the bags.
For a predicted box, we first compute the box overlap ratio
between it and all MCG box proposals, and select the top 10
proposals with the highest overlap ratios as the correspond-
ing instances for the bag.

Training the SS branch requires semantic segmentation
labels. For the first iteration, we use the results generated by

method year Sup. MCG mAPr
0.25 mAPr

0.5

FRCNN (Ren et al. 2015) NeurIPS 2015 FS ˆ 70.7 62.1
FRCNN (Ren et al. 2015) NeurIPS 2015 FS* ˆ 47.8 25.0
MELM (Wang et al. 2018) CVPR 2018 I

‘

36.9 22.9
SPN (Zhou et al. 2016) ICCV 2017 I

‘

26.4 12.7
CAM (Zhou et al. 2016) CVPR 2016 I

‘

20.4 7.8
PRM (Zhou et al. 2018) CVPR 2018 I

‘

44.3 26.8
IAM (Zhu et al. 2019) CVPR 2019 I ˆ 45.9 28.8

ILC (Cholakkal et al. 2019) CVPR 2019 I*
‘

48.5 30.2
Ours - I ˆ 53.6 35.3

Table 1: Performance of instance segmentation on the PAS-
CAL VOC 2012 dataset. The numbers in red and green in-
dicate the best and the second best results, respectively. Sup.
indicates the supervision type, while I, I*, FS, FS* indi-
cate the image-level label, the image-level label and object
counts, the fully supervised setting, and the fully supervised
setting with the same annotation cost of the image-level la-
bel, respectively.

a weakly-supervised semantic segmentation method (Ahn
and Kwak 2018) as the class-level pseudo labels. For the
successive iterations, the unions of all instance masks of the
same class from the IS branch serve as the pseudo labels.

Implementation details
We implement the proposed method using PyTorch. ResNet-
50 (He et al. 2016) is adopted as the backbone network. For
the MIL branch and the SS branch, the batch size is set to 1
and a single GPU is sufficient for training. The learning rate,
weight decay, and momentum are set to 10´4, 0.0001, and
0.9, respectively. For the instance segmentation branch, the
batch size is 16 and learning rate is set to 10´2. Four GPUs
are used for its training. The optimization procedures of the
MIL branch, the SS branch and the IS branch stop after 55k,
80k, 24k epochs respectively. We choose ADAM (Kingma
and Ba 2014) as the optimization solver.

Experimental Results
Our method is evaluated in this section. We first describe the
datasets and evaluation metrics, then compare our method
with the state-of-the-art methods, and finally conduct abla-
tion studies to assess the effect of each component.

Datasets and evaluation metrics
PASCAL VOC 2012 dataset. This dataset (Everingham et
al. 2010) contains 20 object categories. It has 5, 717 training
images and 5, 823 validation images for object classification
and detection, while 1, 464 training images and 1, 449 val-
idation images are used for segmentation. Following (Zhou
et al. 2018), we use the 5, 717 training images of the classi-
fication task as training data, and evaluate our method on the
validation images for the segmentation task.
COCO-VOC dataset. This dataset is collected in (Hsu, Lin,
and Chuang 2019) based on the MS COCO (Lin et al. 2014)
dataset. It contains 12 object categories commonly covered
by PASCAL VOC 2012. It has 1, 281 images with total
3, 151 instances. We only use this dataset for inference.



method year input type MCG mAPr
0.25 mAPr

0.5

CLRW (Tang et al. 2014) CVPR 2014 Multiple
‘

33.3 13.7
UODL (Cho et al. 2015) CVPR 2015 Multiple

‘

9.6 2.2
DDT (Wei et al. 2017) IJCAI 2017 Multiple

‘

31.4 10.1
DFF (Collins, Achanta, and Susstrunk 2018) ECCV 2018 Multiple

‘

31.7 10.6
DDT` (Wei et al. 2019) PR 2019 Multiple

‘

30.8 11.6
PRM (Zhou et al. 2018) CVPR 2018 Single

‘

44.9 14.6
Ours - Single ˆ 60.1 26.0

Table 2: Performance of instance segmentation on the
COCO-VOC dataset. The numbers in red and green indicate
the best and the second best results, respectively.

(a) (b) (c) (d) (e) (f)

Figure 4: Progressive box refinement by CCGR on five ex-
amples (rows). From top to bottom, the object classes are
dining table, bike, bus, sofa and cat respectively. Blue boxes
are the ground truth. Green rectangles are (a) the boxes pre-
dicted by the MIL branch and (b) „ (f) the boxes refined by
CCGR at the 40th, 80th, 120th, 160th, and 200th optimiza-
tion iterations, respectively.

Evaluation mthoetrics. The mean average precision with
an IoU (intersection over union) threshold r (mAPr) (Har-
iharan et al. 2014) is used as the performance measure
for instance segmentation. Following (Zhou et al. 2018;
Hsu, Lin, and Chuang 2019), mAPr with r P t0.25, 0.5u
is computed in this work. Besides, for the evaluation of the
predicted bounding box, we use the same metrics but re-
place the segments with the bounding boxes. We only use
the threshold, 0.5, and denote it by mAPb

0.5.

Competing methods
We select the most representative and the state-of-the-art
methods as the competing methods. In the following, we de-
scribe them based on the datasets.
Methods on the PASCAL VOC 2012 dataset. Our ap-
proach is compared with six weakly supervised state-of-the-
art methods, including three instance segmentation meth-
ods, ILC (Cholakkal et al. 2019), IAM (Zhu et al. 2019),
PRM (Zhou et al. 2018), and three object localization meth-
ods, MELM (Wang et al. 2018), CAM (Zhou et al. 2016),
and SPN (Zhu et al. 2017). Image-level labels are used as
training data in all methods except for ILC using additional
object counts. Following PRM, the MCG (Pont-Tuset et al.
2017) proposals are employed to convert the predicted boxes
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Figure 5: Performance in mAPb
0.5 along the CCGR iterative

optimization process.

in MELM, CAM, and SPN into segments. For each pre-
dicted bounding box, the proposal with the highest IoU is
considered as the results of instance segmentation.
Methods on the COCO-VOC dataset. Two types of meth-
ods are compared on this dataset, as reported in (Hsu, Lin,
and Chuang 2019). The first type is object co-localization,
and we adopt CLRW (Tang et al. 2014), UODL (Cho et al.
2015), DDT (Wei et al. 2017), DDT` (Wei et al. 2019), and
DFF (Collins, Achanta, and Susstrunk 2018) as our com-
peting methods. Similarly, the MCG proposals are used to
convert the box-level results into segment-level ones. The
second type is the weakly supervised instance segmentation,
PRM (Zhou et al. 2018). Although the object co-localization
method requires the multiple images containing the same
object categories, we still include these competing methods
as our baselines to enrich the comparison.

Comparison with the state-of-the-art methods
In Table 1 and Table 2, we report the results of our method
and all competing methods on the PASCAL VOC 2012 and
COCO-VOC datasets, respectively. As shown in Table 1,
our method outperforms the state-of-the-art weakly local-
ization method, MELM (Wang et al. 2018) by a large mar-
gin 12.4% in mAPr

0.5 and the state-of-the-art weakly super-
vised instance segmentation method, ICL (Cholakkal et al.
2019) by a large margin 5.1% in mAPr

0.5. However, ILC re-
quires the additional object counts for training, and thus has
more annotation cost. Besides, all competing methods ex-
cept for IAM in Table 1 require the MCG proposals, so their
results depend on the quality of object proposals. However,
we don’t require any proposals for inference, so our method
can run faster and don’t depend on any external proposal re-
sults. In Table 2, the object co-localization methods belong
to the online optimization methods, and require the MCG
proposals, so our method can run faster than these methods
and has higher performance.
Annotation cost analysis. In Table 1, we also compare to
our upper bound, Mask R-CNN, training on the pixel-level
masks. Besides, we also compare the fully-supervised Mask
R-CNN trained on the pixel-level mask with the same anno-
tation cost of the image-level labels, as discussed by (Bear-
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Table 3: Ablation studies of our proposed methods. * indi-
cates that the proposals is generated by the pretrained RPN.

man et al. 2016). Our upper bound is 62.1 in mAPb
0.5, but

our method outperforms Mask R-CNN with the same anno-
tation cost by a large margin about 10.3% in mAPb

0.5 due to
more training images.

Ablation studies
We conduct the convergence analysis of CCGR. Figure 5
plots the performance in mAPb

0.5 along the CCGR iterative
optimization process on the training images of the PASCAL
VOC 2012 classification task. We observe that CCGR con-
verges smoothly, and the performance is gradually improved
along with optimization. To gain insight into the quantitative
analysis, Figure 4 displays the bounding boxes gradually re-
fined by CCGR. It is observed that the output boxes can be
greatly improved by CCGR even under unfavorable condi-
tions, such as clutter background (dinning table and sofa),
large intra-object variations (bus), complex object shapes
(bike), and low figure-ground distinctness (cat).

In Table 3, we also show performance without the detec-
tion branch and the CCGR. It is noted that we only show
the results of the first training iteration. Without the de-
tection branch, we simply generate the bounding box with
four corners of the segmentation mask. This result is 19.3
in mAPb

0.5, and falls behind our method by a margin 11.9%
since the masks may contain multiple instances of the same
category. On the other hand, we stop the CCGR process if
the refined bounding box contains more than one peak, and
thus the proposed CCGR can prevent this situation. The re-
sult without GGCR is 25.0 in mAPb

0.5, and it is also lower
than our method. It can prove that CCGR can produce the
pseudo ground truth with higher quality. Besides, we also
conduct the results with the RPN pre-trained on the external
dataset, and thus the external proposal algorithm, MCG, is
not adopted. In Table 3, the result using RPN pre-trained on
COCO dataset without fine-tuning is 19.8 in mAPb

0.5, which
is lower than our method. Compared to the pre-trained RPN,
the end-to-end learning manner can learn more reliable RPN
parameters, and thus the better result can be produced.

Qualitative results
We show several examples of the segmentation results
in Figure 6. Even with challenging variations, such as
closeness, occlusions, and multiple scales of instances, our
method can still deal with these variations well. In Figure 6
(a) and (b), we present multiple instances belonging to the
same category, i.e., cow, and our method can produce the
promising results. Moreover, in Figure 6 (c) and (d), mul-
tiple instances of different categories, i.e., train and person,

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: In the first and last three rows, the successful and
failure results are shown. For each case, from the first row to
the third row, the input images, the ground truth masks, and
the predicted results are shown, respectively.

are shown. The occlusion between instances also appears in
this image. Nevertheless, our method works well.
Limitation. In Figure 6, some typical failure cases are also
shown. In (f), our method wrongly merges the two differ-
ent instances of the same categories because of the similar
pattern. In (g) and (h), our method fails to detect accurate
boundaries of objects because of the instance closeness. In
(i) and (j), false positives and false negatives appear since
noisy patterns in clutter background are presented.

Conclusion

This paper proposes a weakly supervised instance segmen-
tation method requiring only image-level class annotations.
To address this task, we introduce a new deep architecture
containing three branches, including the MIL branch, the SS
branch, and the IS branch. The bounding boxes containing
instances are selected in the MIL branch, and the segmen-
tation results offering the shapes of instances are provided
in the SS branch. By combining two types of results, we
produce pseudo instance masks as the training data to train
the IS branch. To further improve the quality of the gener-
ated pseudo labels, we propose CCGR, which significantly
enhance the performance. In the experiments, the proposed
method outperforms the state-of-the-art weakly supervised
methods. In the future, we will integrate the proposed ar-
chitecture and CCGR into the more difficult task, panoptic
segmentation, which unifies instance segmentation for thing
classes and semantic segmentation for stuff classes.
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